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GETTING SMART ABOUT OIL IN A WARMING WORLD

CAPTURING THE COMPLEXITY OF CRUDES

International efforts to reduce greenhouse gas (GHG) emissions 
are necessary to avoid irreversible damage to the global climate.1 
While there has been significant recent progress toward reducing 
emissions from some fuels (mainly in the electricity sector), iner-
tia is still the rule elsewhere. For example, petroleum fuels still 
occupy a key strategic position in the global economy, provid-
ing an overwhelming share (more than 95 percent) of  transport 
energy, along with petrochemical feedstocks, fuel oils, asphalt, 
and other petroleum products. The world will likely consume oil 
for some time to come. 

Because of  the range of  emissions from global oils, it matters 
which oil is burned on the path to a low emissions future. One 
way to choose among oils is to compare their direct emissions 
from fuel combustion (which follow closely from the carbon 
content of  the unprocessed crude), but this method can be 
misleading. Total emissions, including those from the produc-
tion, refining, and transport of  oils, do not always align well with 
underlying carbon content. 

Some researchers have attempted to assess total emissions of  
transport fuels,2 but until recently such analyses have not cap-
tured the full complexity of  crude oil. The updated version of  
the Oil-Climate Index (OCI) gives a comprehensive view of  the 

total climate risks associated with about one-quarter of  the crude 
oil now traded on global markets. 

CHALLENGING TRADITIONAL THINKING

Efforts to assess and influence the GHG emissions of  oil over 
the past few decades have focused mainly on petroleum products 
sold to end users, such as gasoline and diesel fuels.3 Sometimes 
these efforts promoted alternative fuels (to displace petroleum 
products), sometimes they pushed efficiency in vehicles, and 
sometimes they suggested taxing gasoline or diesel fuel. The 
product focus was common because everyone assumed that oil’s 
emissions did not vary much from barrel to barrel, and under-
standing of  the oil supply chain was limited.

These product-centric analyses usually made at least two conse-
quential errors that underestimated the variation in total emis-
sions associated with crude oil: 

• Poor boundary choices: Focusing on transport fuels means that 
these analyses often did not track all carbon in the oil barrel 
and so missed co-products, including petrochemical feed-
stocks, asphalt, petroleum coke (also known as petcoke), and 
other residual fuels. These co-products’ GHG emissions 
(and market values) do not correlate well with those of  gaso-
line, diesel, and jet fuel.  
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• Using averages that did not capture the full range of  observed variabil-
ity in emissions: All analytical techniques (especially those used 
in estimating “typical” emissions) use averages, but some 
averaging reduces accuracy. Most calculations of  end-use 
petroleum product emissions rely on average characteristics 
for upstream production and midstream refining emissions, 
implicitly assuming that there is little variation in such emis-
sions (which is not necessarily true). 

These problems have sometimes led policymakers astray. Fortu-
nately, there is another way to analyze crude oil emissions that 
can yield important insights, complementing those from the 
product-centric approach.

AN ALTERNATIVE APPROACH

The crude-centric analytical approach of  the OCI analyzes 
emissions for a barrel of  oil from a particular oil field,4 considering 
all products from each barrel as well as the entire supply chain from 
upstream production and crude transport, to midstream refining, 
to downstream product transport and end use. The power of  this 
approach is its ability to target where in the supply chain emissions 
occur and to identify differences in emissions associated with 
different types of  oil,5 which can be substantial. 

Here are some of  the advantages of  the crude-centric approach:

• It allows for a more accurate assessment of  the climate risks 
to producers of  barrels of  reserves in the ground and refin-
ers of  particular oils, with specific focus on extra-heavy oils; 
gas-rich oils that flare associated gas; depleted oils; remote 
oils; and oils in environmentally sensitive ecosystems. 

• It permits more comprehensive and readily updated tracking 
of  total oil sector GHG emissions than the product-centric 
approach, and creates new options for innovative policies.

• It creates opportunities for producers, refiners, transporters, 
investors, commodity traders, policymakers, and consumers 
to reduce emissions throughout the oil supply chain.

Looking at oil’s total GHG equivalent emissions per barrel,6 per 
unit of  energy content, and per dollar of  total product value (as 
we do in the OCI web tool7) yields insights that are not available 
from the product-centric approach.

HIGHLIGHTING OCI METHODS

Upstream (Production) Emissions
Finding oil, extracting it, and processing it for transport to a 
refinery are the first steps in the supply chain, and together these 
comprise upstream operations. The resulting GHG emissions 
are modeled in the Oil Production Greenhouse gas Emissions 
Estimator (OPGEE). The emissions from different oils have 
diverse sources, including pumping and compression, steam 
generation, flaring and venting of  associated gas,8 and ecosystem 
disruption or degradation. 

Midstream (Refining) Emissions
Crude itself  is not ready for direct consumption. Refineries turn 
crude oil into marketable petroleum products by using heat, 
applying pressure, adding hydrogen, and removing carbon to 
reconfigure hydrocarbon molecules. This transformation can be 
GHG intensive, depending on the oil. 

The Petroleum Refinery Life-Cycle Inventory Model (PRELIM) 
is the first open-source refinery model that estimates energy and 
GHG emissions associated with various crudes (or crude blends) 
processed in different refinery types using a variety of  processing 
equipment. PRELIM provides the second of  the three compo-
nents in the crude-centric oil life-cycle assessment, and influences 
the OCI in two important ways: it estimates midstream GHG 
emissions, and it predicts what petroleum product volumes a 
particular refinery will produce for end-use consumption. 

Downstream (Product Transport and  
End-Use Combustion) Emissions
Petroleum products flow from the outlet of  the refinery gate, then 
are transported to end users and consumed. Most of  these products 
(such as gasoline, diesel, and jet fuel) are used in transportation, 
other co-products (such as residual fuels and petroleum coke) 
are often combusted in stationary engines and power plants, 
while others (like petrochemical feedstocks and asphalt) are not 
combusted at all. The Oil Products Emissions Model (OPEM) uses 
the product outputs from PRELIM to calculate emissions from 
petroleum product transport and end use.

KEY OCI RESULTS

The newly updated analysis in Phase 2 has extended the OCI 
to include 75 oils representing over 25 percent of  global oil 
production (see figures 1 and 2).9 This is up from 30 oils in 
Phase 1, which represented 5 percent of  global production. In 
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addition to greatly increasing the coverage of  global crudes, the 
new analysis maps oils, incorporates flaring data obtained by 
remote sensing from satellites, and highlights operating decisions 
that affect emissions.10 

In this second phase of  the OCI analysis, upstream production 
and midstream refining GHG-equivalent emissions per barrel 
each vary by about a factor of  ten from lowest to highest, and 
downstream emissions for the highest-emitting oil are about 
50 percent larger than for the lowest-emitting oil. Total GHG 
emissions per barrel for the highest-emitting oil in the Phase 2 
sample are about 60 percent higher than for the lowest-emitting 
oil. If  oil’s associated gas is used or sold instead of  flared or 
vented, the high end of  the emission range can be 80 to 90 
percent higher than the low end. 

KEY LESSONS FOR OIL SECTOR STAKEHOLDERS

Crude-centric thinking points to differences between oils and 
disaggregates their GHG emissions, leading to actionable insights 
for industry, private investors, public sector policymakers, NGOs, 
researchers, and other oil stakeholders.

Industry
• Data transparency must become the new normal. The OCI 

only includes data for 25 percent of  global production. 
Assessing all currently produced crudes (as well as prospec-
tive resource opportunities) will only be possible with more 
open-source industry data on upstream operations, oil assays, 
refinery characteristics, and product logistics. 

• The OCI offers industry new information and insights into 
their investment and operational decisions to better manage 
climate risks. Such analyses will help industry answer ques-
tions like: “How could refinery investments shift in a world 
pushing for rapid GHG emissions reductions?” and “How 
can our exploration and development plans minimize climate 
risks to future production portfolios?” 

Investors
• Climate risk is a new challenge for anyone investing in oil. 

Such investors have not yet taken climate risks into account 
in any significant way, even though oil investments are capital 
intensive and long lived. 

• Oil resources are becoming more heterogeneous and 
complex, and tools like the OCI can help assess how future 
climate policies and market shifts could affect profitability on 
an oil-by-oil basis.

• Socially responsible investors need tools like the OCI to 
help them decide whether to divest from oil altogether or 
influence industry to modify its supply chain. 

Policymakers
• The OCI illuminates what data public agencies need to stan-

dardize and routinely collect in order to assess and manage 
climate risks of  different oil resources.

• The index can help financial regulators determine how 
climate risks may affect the way reserves are tracked on an oil 
company’s balance sheet. 

• The OCI offers policymakers a way to guide more effective 
decisionmaking. It can help answer questions like: “How 
can public policies help promote better management of  oil 
resources through more carbon-aware operational decisions, 
like choosing lower-emitting oils to exploit, controlling flar-
ing, managing petcoke, and using solar-generated steam and 
renewable hydrogen where possible?”

NGOs and Academia
• There is a pressing need for standardized reporting (which 

is currently lacking) on oil composition (assays), data on 
upstream impacts, and destinations of  high-emitting oil 
byproducts such as petcoke and residual oils. 

• The uncertainties and variability in emissions estimates from 
the crude-centric approach warrant further exploration.

• Future oil analyses must also focus on the margin, instead of  
just comparing energy innovations assuming an average oil. 
Such marginal comparisons will yield vital information for all 
participants in oil markets. 

• The OCI can help researchers check and improve GHG 
emissions inventories to make sure that all of  an oil’s emis-
sions are correctly counted. 

NEXT STEPS FOR ADDRESSING  
OIL-CLIMATE ISSUES

Continued expansion of  the OCI will yield new opportunities for 
emissions reductions. To capture those opportunities, industry 
must actively support and policymakers must actively engage in 
efforts to assess life-cycle emissions from oils, both for those 
in current production and for prospective future resources. We 
suggest the following next steps for oil industry stakeholders: 

• Commit to open-source oil sector GHG reporting, including collect-
ing the technical data needed to model all oils through the 
OCI or similar tools, to explore uncertainties, and more fully 
evaluate economic and environmental trade-offs.11 
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• Use the OCI to identify where in the supply chain significant innova-
tions are possible for deep reductions in oil sector GHG emissions, 
such as renewable hydrogen feedstocks in refining, micro-
bial extraction methods, and carbon dioxide injection for 
enhanced oil recovery (which can, in some cases, store  
CO2 safely underground).

• Expand remote sensing to monitor and verify the oil industry’s 
climate impacts, including satellites that measure flaring 
and venting of  associated gas as well as land-use impacts 
throughout the oil supply chain. 

• Use the OCI to design a smart tax on oil’s GHG emissions, bringing 
the power of  supply chain innovation to meet climate com-
mitments made at the UN Climate Change Conference in 
Paris in 2015.

Focusing mainly on petroleum products has handicapped efforts 
to help the oil industry make choices consonant with a low-carbon 
world. The OCI’s crude-centric approach can bring attention to 
changes in the supply chain, spur oil innovations, minimize climate 
risks to investors, enable smarter public policies, and reduce 
total GHG emissions. To accomplish these goals will require 
widespread adoption of  this new way of  thinking, as well as 
further expansion of  the OCI to include new data and analysis.
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Figure 1: Estimated Greenhouse Gas Emissions per Barrel From 75 Global Oils in the OCI

Source: Deborah Gordon, Adam Brandt, Joule Bergerson, and Jonathan Koomey, “Oil-Climate Index,” Carnegie Endowment for International Peace, 
last modified September 2016, http://oci.carnegieendowment.org/.
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Figure 2: Estimated Greenhouse Gas Emissions per Unit of Energy in the Petroleum Products From 75 Global Oils in the OCI 

Source: Deborah Gordon, Adam Brandt, Joule Bergerson, and Jonathan Koomey, “Oil-Climate Index,” Carnegie Endowment for International Peace, last modified October 2016, http://oci.carnegieendowment.org/.
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